Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 421
Filter
1.
J Environ Manage ; 359: 121034, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38703649

ABSTRACT

Frequent algal blooms cause algal cells and their algal organic matter (AOM) to become critical precursors of disinfection by-products (DBPs) during water treatment. The presence of bromide ion (Br-) in water has been demonstrated to affect the formation laws and species distribution of DBPs. However, few researchers have addressed the formation and toxicity alteration of halonitromethanes (HNMs) from algae during disinfection in the presence of Br-. Therefore, in this work, Chlorella vulgaris was selected as a representative algal precursor to investigate the formation and toxicity alteration of HNMs during UV/chloramination involving Br-. The results showed that the formation concentration of HNMs increased and then decreased during UV/chloramination. The intracellular organic matter of Chlorella vulgaris was more susceptible to form HNMs than the extracellular organic matter. When the Br-: Cl2 mass ratio was raised from 0.004 to 0.08, the peak of HNMs total concentration increased 33.99%, and the cytotoxicity index and genotoxicity index of HNMs increased 67.94% and 22.80%. Besides, the formation concentration and toxicity of HNMs increased with increasing Chlorella vulgaris concentration but decreased with increasing solution pH. Possible formation pathways of HNMs from Chlorella vulgaris during UV/chloramination involving Br- were proposed based on the alteration of nitrogen species and fluorescence spectrum analysis. Furthermore, the formation laws of HNMs from Chlorella vulgaris in real water samples were similar to those in deionized water samples. This study contributes to a better comprehension of HNMs formation from Chlorella vulgaris and provides valuable information for water managers to reduce hazards associated with the formation of HNMs.

2.
J Hazard Mater ; 471: 134362, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38643576

ABSTRACT

Cupric ions (Cu2+) are ubiquitous in surface waters and can influence disinfection byproducts (DBPs) formation in water disinfection processes. This work explored the effects of Cu2+ on chlorinated DBPs (Cl-DBPs) formation from six representative nitrophenol compounds (NCs) during UV irradiation followed by a subsequent chlorination (i.e., UV/post-chlorination), and the results showed Cu2+ enhanced chlorinated halonitromethane (Cl-HNMs) formation from five NCs (besides 2-methyl-3-nitrophenol) and dichloroacetonitrile (DCAN) and trichloromethane (TCM) formation from six NCs. Nevertheless, excessive Cu2+ might reduce Cl-DBPs formation. Increasing UV fluences displayed different influences on total Cl-DBPs formation from different NCs, and increasing chlorine dosages and NCs concentrations enhanced that. Moreover, a relatively low pH (5.8) or high pH (7.8) might control the yields of total Cl-DBPs produced from different NCs. Notably, Cu2+ enhanced Cl-DBPs formation from NCs during UV/post-chlorination mainly through the catalytic effect on nitro-benzoquinone production and the conversion of Cl-DBPs from nitro-benzoquinone. Additionally, Cu2+ could increase the toxicity of total Cl-DBPs produced from five NCs besides 2-methyl-3-nitrophenol. Finally, the impacts of Cu2+ on Cl-DBPs formation and toxicity in real waters were quite different from those in simulated waters. This study is conducive to further understanding how Cu2+ affected Cl-DBPs formation and toxicity in chlorine disinfection processes and controlling Cl-DBPs formation in copper containing water.

3.
Sci Total Environ ; 927: 172200, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575027

ABSTRACT

Nitrophenol compounds (NCs) are widely distributed in water environments and regarded as important precursors of disinfection byproducts (DBPs). Herein, 4-nitrophenol and 2-amino-4-nitrophenol were selected as representative NCs to explore chlorinated DBPs (Cl-DBPs) formation during UV/post-chlorination. Dichloronitromethane (DCNM), trichloronitromethane (TCNM), dichloroacetonitrile (DCAN), and trichloromethane (TCM) were formed from 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination, and the yields of individual Cl-DBPs from 2-amino-4-nitrophenol were higher than those from 4-nitrophenol. Meantime, increasing chlorine contact time, UV fluence, and free chlorine dose could enhance Cl-DBPs formation, while much higher values of the three factors might decrease the yields of Cl-DBPs. Besides, alkaline pH could decrease the yields of halonitromethane (HNMs) and DCAN but increase the yields of TCM. Also, higher concentrations of 4-nitrophenol and 2-amino-4-nitrophenol would induce more Cl-DBPs formation. Subsequently, the possible formation pathways of DCNM, TCNM, DCAN, and TCM form 4-nitrophenol and 2-amino-4-nitrophenol during UV/post-chlorination were proposed according to transformation products (TPs) and density functional theory (DFT) calculation. Notably, Cl-DBPs formed from 2-amino-4-nitrophenol presented higher toxicity than those from 4-nitrophenol. Among these generated Cl-DBPs, DCAN and TCNM posed higher cytotoxicity and genotoxicity, respectively. Furthermore, 4-nitrophenol, 2-amino-4-nitrophenol, and their TPs exhibited ecotoxicity. Finally, 4-nitrophenol and 2-amino-4-nitrophenol presented a high potential to produce DCNM, TCNM, DCAN, and TCM in actual waters during UV/post-chlorination, but the Cl-DBPs yields were markedly different from those in simulated waters. This work can help better understand Cl-DBPs formation from different NCs during UV/post-chlorination and is conducive to controlling Cl-DBPs formation.

4.
Antimicrob Agents Chemother ; 68(5): e0150423, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38587380

ABSTRACT

A fixed-dose combination (FDC) of 50 mg dolutegravir and 300 mg lamivudine is indicated for the treatment of HIV-1 infection. This analysis aimed to characterize the population pharmacokinetics (PK) of dolutegravir and lamivudine based on data from a phase 3 study (TANGO) in virologically suppressed adults living with HIV-1 switching to dolutegravir/lamivudine FDC. These analyses included 362 participants who contributed 2,629 dolutegravir and 2,611 lamivudine samples collected over 48 weeks. A one-compartment model with first-order absorption and elimination parameterized by apparent oral clearance (CL/F), apparent volume of distribution (V/F), and absorption rate constant (Ka) described dolutegravir PK. Covariate search yielded body weight, bilirubin, and ethnicity as predictors of CL/F, and weight was predictive for V/F. The estimates of CL/F, V/F, and Ka were 0.858 L/h, 16.7 L, and 2.15 h-1, respectively. A two-compartment model with first-order absorption and elimination parameterized by CL/F, apparent intercompartmental clearance (Q/F), apparent central volume of distribution (V2/F), apparent peripheral volume of distribution (V3/F), and Ka described lamivudine PK. Covariate search yielded eGFR and race as predictors of CL/F, and weight was predictive for V2/F. The estimated parameter values were CL/F = 19.6 L/h, Q/F = 2.97 L/h, V2/F = V3/F = 105 L, and Ka = 2.30 h-1. The steady-state prediction suggested that the effect of covariates dolutegravir and lamivudine exposures was small (<20%) and not clinically relevant. Therefore, no dose adjustments are recommended based on these analyses. The results support the use of dolutegravir/lamivudine FDC in the treatment of HIV-1 infection in adults.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT03446573.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Heterocyclic Compounds, 3-Ring , Lamivudine , Oxazines , Piperazines , Pyridones , Humans , Lamivudine/pharmacokinetics , Lamivudine/therapeutic use , Lamivudine/administration & dosage , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/administration & dosage , Heterocyclic Compounds, 3-Ring/therapeutic use , Oxazines/pharmacokinetics , HIV Infections/drug therapy , HIV Infections/virology , Piperazines/pharmacokinetics , Pyridones/pharmacokinetics , Adult , Male , Female , HIV-1/drug effects , Middle Aged , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/administration & dosage , Drug Combinations
5.
J Wound Care ; 33(Sup3a): lxxiv-lxxx, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38457271

ABSTRACT

OBJECTIVE: The purpose of the study was to compare the healing potential of bubaline small intestinal matrix (bSIM) and fish swim bladder matrix (FSBM) on full-thickness skin wounds in rabbits. METHOD: Four full-thickness skin wounds (each 20×20mm) were created on the dorsum of 18 rabbits that were divided into three groups based on treatment: untreated sham control (I), implanted with double layers of bSIM (II) and implanted with double layers of FSBM (III). Macroscopic, immunologic and histologic observations were made to evaluate wound healing. RESULTS: Gross healing progression in the bSIM and FSBM groups showed significantly (p<0.05) less wound contraction compared with the sham group. The IgG concentration in rabbit sera was significantly (p<0.05) lower in the FSBM group compared with the bSIM group by enzyme-linked immunosorbent assay. The stimulation index of peripheral blood lymphocytes was significantly (p<0.05) lower in the FSBM group compared with the bSIM group by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Implantation of FSBM resulted in improved re-epithelialisation, neovascularisation and fibroplasia. CONCLUSION: The FSBM is a more effective dermal substitute when compared with the bSIM for full-thickness skin wound repair in rabbit.


Subject(s)
Acellular Dermis , Soft Tissue Injuries , Animals , Rabbits , Wound Healing , Skin/injuries , Skin Transplantation/methods , Fishes
6.
J Mater Chem B ; 12(14): 3494-3508, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38512116

ABSTRACT

Magnetite (Fe3O4) nanoparticle (MNP)-substituted glass-ceramic (MSGC) powders with compositions of (45 - x)SiO2-24.5CaO-24.5Na2O-6P2O5-xFe3O4 (x = 5, 8, and 10 wt%) have been prepared by a sol-gel route by introducing Fe3O4 nanoparticles during the synthesis. The X-ray diffraction patterns of the as-prepared MSGC nanopowders revealed the presence of combeite (Na2Ca2Si3O9), magnetite, and sodium nitrate (NaNO3) crystalline phases. Heat-treatment up to 700 °C for 1 h resulted in the complete dissolution of NaNO3 along with partial conversion of magnetite into hematite (α-Fe2O3). Optimal heat-treatment of the MSGC powders at 550 °C for 1 h yielded the highest relative percentage of magnetite (without hematite) with some residual NaNO3. The saturation magnetization and heat generation capacity of the MSGC fluids increased with an increase in the MNP content. The in vitro bioactivity of the MSGC pellets was evaluated by monitoring the pH and the formation of a hydroxyapatite surface layer upon immersion in modified simulated body fluid. Proliferation of MG-63 osteoblast cells indicated that all of the MSGC compositions were non-toxic and MSGC with 10 wt% MNPs exhibited extraordinarily high cell viability. The MSGC with 10 wt% MNPs demonstrated optimal characteristics in terms of cell viability, magnetic properties, and induction heating capacity, which surpass those of the commercial magnetic fluid FluidMag-CT employed in hyperthermia treatment.


Subject(s)
Biocompatible Materials , Ferric Compounds , Magnetite Nanoparticles , Biocompatible Materials/chemistry , Silicon Dioxide/chemistry , Ferrosoferric Oxide , Heating , Ceramics/pharmacology , Ceramics/chemistry
7.
ACS Biomater Sci Eng ; 10(4): 2151-2164, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38453640

ABSTRACT

Poly(methyl methacrylate) (PMMA) is commonly used for dental dentures, but it has the drawback of promoting oral health risks due to oral bacterial adhesion. Recently, various nanoparticles have been incorporated into PMMA to tackle these issues. This study aims to investigate the mechanophysical and antimicrobial adhesive properties of a denture resin by incorporating of nanoclay into PMMA. Specimens were prepared by adding 0, 1, 2, and 4 wt % surface-modified nanoclay (Sigma) to self-polymerizing PMMA denture resin. These specimens were then evaluated using FTIR, TGA/DTG, and FE-SEM with EDS. Various mechanical and surface physical properties, including nanoindentation, were measured and compared with those of pure PMMA. Antiadhesion experiments were conducted by applying a Candida albicans (ATCC 11006) suspension to the surface of the specimens. The antiadhesion activity of C. albicans was confirmed through a yeast-wall component (mannan) and mRNA-seq analysis. The bulk mechanical properties of nanoclay-PMMA composites were decreased compared to those of pure PMMA, while the flexural strength and modulus met the ISO 20795-1 requirement. However, there were no significant differences in the nanoindentation hardness and elastic modulus. The surface energy revealed a significant decrease at 4 wt % nanoclay-PMMA. The antiadhesion effect of Candida albicans was evident along with nanoclay content in the nanocomposites and confirmed by the reduced attachment of mannan on nanoclay-PMMA composites. mRNA-seq analysis supported overall transcriptome changes in altering attachment and metabolism behaviors on the surface. The nanoclay-PMMA materials showed a lower surface energy as the content increased, leading to an antiadhesion effect against Candida albicans. These findings indicate that incorporating nanoclay into PMMA surfaces could be a valuable strategy for preventing the fungal biofilm formation of denture base materials.


Subject(s)
Adhesives , Polymethyl Methacrylate , Mannans , Materials Testing , Dentures , RNA, Messenger
8.
Sci Total Environ ; 926: 171797, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38513870

ABSTRACT

The impact of different operational parameters on the composting efficiency and compost quality during pilot-scale membrane-covered composting (MCC) of food waste (FW) was evaluated. Four factors were assessed in an orthogonal experiment at three different levels: initial mixture moisture (IMM, 55 %, 60 %, and 65 %), aeration time (AT, 6, 9, and 12 h/d), aeration rate (AR, 0.2, 0.4, and 0.6 m3/h) and mature compost addition ratio (MC, 2 %, 4 %, and 6 %). Results indicated that 55 % IMM, 6 h/d AT, 0.4 m3/h AR, and 4 % MC addition ratio simultaneously provided the compost with the maximum cumulative temperature and the minimum moisture. It was shown that the IMM was the driving factor of this optimum composting process. On contrary, the optimal parameters for reducing carbon and nitrogen loss were 65 % IMM, 6 h/d AT, 0.4 m3/h AR, and 2 % MC addition ratio. The AR had the most influence on reducing carbon and nitrogen losses compared to all other factors. The optimal conditions for compost maturity were 55 % IMM, 9 h/d AT, 0.2 m3/h AR, and 6 % MC addition ratio. The primary element influencing the pH and electrical conductivity values was the AR, while the germination index was influenced by IMM. Protein was the main organic matter limiting the composting efficiency. The results of this study will provide guidance for the promotion and application of food waste MCC technology, and contribute to a better understanding of the mechanisms involved in MCC for organic solid waste treatment.


Subject(s)
Composting , Refuse Disposal , Refuse Disposal/methods , Food Loss and Waste , Food , Carbon/analysis , Nitrogen/analysis , Soil
9.
Nat Prod Res ; : 1-4, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38462728

ABSTRACT

Bioassay targeted phyto-investigation of dried green walnut husk of Ribes glaciale Wall. yielded one new compound as ß-D-glucopyrano (4'→3)-ß-D-glucopyranose (1) and four known compounds namely scoparone (2), apigenin (3), ß-sitosterol (4) and ß-sitosterol-D-glucoside (5). The structure of new compound was elucidated with the help of 1D, 2D and HRESIMS analysis. The antioxidant activity of extract, fractions and pure were evaluated using 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric ion reducing antioxidant power (FRAP) assays that found in the following order: butanol fr. (BF) > chloroform fr. (CF) > ethylacetate fr. (EF) > Petroleum ether fr. (PF). To search for potent antioxidant agents in extract, the isolated compounds 1, 2, 3, 4 and 5 were docked on the enzyme human NADPH oxidase, lipoxygenase, cytochrome P450 and myeloperoxidase. The compound 1 was found a potent inhibitor of target enzyme revealing its high free radical scavenging potential.

10.
ACS Appl Mater Interfaces ; 16(11): 13622-13639, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38466038

ABSTRACT

The design of implantable biomaterials involves precise tuning of surface features because the early cellular fate on such engineered surfaces is highly influenced by many physicochemical factors [roughness, hydrophilicity, reactive oxygen species (ROS) responsiveness, etc.]. Herein, to enhance soft tissue integration for successful implantation, Ti substrates decorated with uniform layers of nanoceria (Ce), called Ti@Ce, were optimally developed by a simple and cost-effective in situ immersion coating technique. The characterization of Ti@Ce shows a uniform Ce distribution with enhanced roughness (∼3-fold increase) and hydrophilicity (∼4-fold increase) and adopted ROS-scavenging capacity by nanoceria coating. When human gingival fibroblasts were seeded on Ti@Ce under oxidative stress conditions, Ti@Ce supported cellular adhesion, spreading, and survivability by its cellular ROS-scavenging capacity. Mechanistically, the unique nanocoating resulted in higher expression of amphiphysin (a nanotopology sensor), paxillin (a focal adhesion protein), and cell adhesive proteins (collagen-1 and fibronectin). Ti@Ce also led to global chromatin condensation by decreasing histone 3 acetylation as an early differentiation feature. Transcriptome analysis by RNA sequencing confirmed the chromatin remodeling, antiapoptosis, antioxidant, cell adhesion, and TGF-ß signaling-related gene signatures in Ti@Ce. As key fibroblast transcription (co)factors, Ti@Ce promotes serum response factor and MRTF-α nucleus localization. Considering all of this, it is proposed that the surface engineering approach using Ce could improve the biological properties of Ti implants, supporting their functioning at soft tissue interfaces and utilization as a bioactive implant for clinical conditions such as peri-implantitis.


Subject(s)
Cerium , Fibroblasts , Titanium , Humans , Reactive Oxygen Species/metabolism , Titanium/pharmacology , Titanium/chemistry , Cells, Cultured , Surface Properties , Cell Adhesion/physiology , Fibroblasts/metabolism
11.
Article in English | MEDLINE | ID: mdl-38361099

ABSTRACT

This study attempted to determine the influence of diverse green wastes on food waste digestate composting and the improvement of operational conditions. Various effects of the green wastes (GW), with different types and sizes, initial substrate mixture C/N ratios, compost pile heights, and turning frequencies on the food waste digestate (FWD) composting were examined in the current work. The findings showed that the use of street sweeping green waste (SSGW) as an additive can maintain the thermophilic stage of the FWD composting for 28 days, while the end-product contained the greatest amounts of total phosphorus (TP, 2.29%) and total potassium (TK, 4.61%) and the lowest moisture content (14.8%). Crushed SSGW (20 mm) enabled the FWD composting to maintain the longest thermophilic period (28 days), achieving the highest temperature (70.2 °C) and seed germination index (GI, 100%). Adjusting the initial substrate mixture C/N ratio to 25, compost pile height to 30 cm, and turning frequency to three times a day could enhance the efficiency and improve the fertilizer quality of the co-composting of the FWD and SSGW. This study suggested that co-composting of FWD and SSGW (FWD/SSGW = 2.3, wet weight) is a promising technique for the treatment of municipal solid waste and provided significant theoretical data for the application of composting.

12.
Diagn Pathol ; 19(1): 43, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414074

ABSTRACT

BACKGROUND: The integration of large language models (LLMs) like ChatGPT in diagnostic medicine, with a focus on digital pathology, has garnered significant attention. However, understanding the challenges and barriers associated with the use of LLMs in this context is crucial for their successful implementation. METHODS: A scoping review was conducted to explore the challenges and barriers of using LLMs, in diagnostic medicine with a focus on digital pathology. A comprehensive search was conducted using electronic databases, including PubMed and Google Scholar, for relevant articles published within the past four years. The selected articles were critically analyzed to identify and summarize the challenges and barriers reported in the literature. RESULTS: The scoping review identified several challenges and barriers associated with the use of LLMs in diagnostic medicine. These included limitations in contextual understanding and interpretability, biases in training data, ethical considerations, impact on healthcare professionals, and regulatory concerns. Contextual understanding and interpretability challenges arise due to the lack of true understanding of medical concepts and lack of these models being explicitly trained on medical records selected by trained professionals, and the black-box nature of LLMs. Biases in training data pose a risk of perpetuating disparities and inaccuracies in diagnoses. Ethical considerations include patient privacy, data security, and responsible AI use. The integration of LLMs may impact healthcare professionals' autonomy and decision-making abilities. Regulatory concerns surround the need for guidelines and frameworks to ensure safe and ethical implementation. CONCLUSION: The scoping review highlights the challenges and barriers of using LLMs in diagnostic medicine with a focus on digital pathology. Understanding these challenges is essential for addressing the limitations and developing strategies to overcome barriers. It is critical for health professionals to be involved in the selection of data and fine tuning of the models. Further research, validation, and collaboration between AI developers, healthcare professionals, and regulatory bodies are necessary to ensure the responsible and effective integration of LLMs in diagnostic medicine.


Subject(s)
Artificial Intelligence , Diagnosis, Computer-Assisted , Humans
13.
Article in English | MEDLINE | ID: mdl-38393564

ABSTRACT

Evaluation of the hydrological performance of grassed swales usually needs long-term monitoring data. At present, suitable techniques for simulating the hydrological performance using limited monitoring data are not available. Therefore, current study aims to investigate the relationship between saturated hydraulic conductivity (Ks) fitting results and rainfall characteristics of various events series length. Data from a full-scale grassed swale (Enschede, the Netherlands) were utilized as long-term rainfall event series length (95 rainfall events) on the fitting outcomes. Short-term rainfall event series were extracted from these long-term series and used as input in fitting into a multivariate nonlinear model between Ks and its influencing rainfall indicators (antecedent dry days, temperature, rainfall, rainfall duration, total rainfall, and seasonal factor (spring, summer, autumn, and winter, herein refer as 1, 2, 3, and 4). Comparison of short-term and long-term rainfall event series fitting results allowed to obtain a representative short-term series that leads to similar results with those using long-term series. A cluster analysis was conducted based on the fitting results of the representative rainfall event series with their rainfall event characteristics using average values of influencing rainfall indicators. The seasonal index (average value of seasonal factors) was found to be the most representative short rainfall event series indicator. Furthermore, a Bayesian network was proposed in the current study to predict if a given short-term rainfall event series is representative. It was validated by a data series (58 rainfall events) from another full-scale grassed swale located in Utrecht, the Netherlands. Results revealed that it is quite promising and useful to evaluate the representativeness of short-term rainfall event series used for long-term hydrological performance evaluation of grassed swales.

14.
J Tissue Eng ; 15: 20417314241228118, 2024.
Article in English | MEDLINE | ID: mdl-38343772

ABSTRACT

The dura mater, as the crucial outermost protective layer of the meninges, plays a vital role in safeguarding the underlying brain tissue. Neurosurgeons face significant challenges in dealing with trauma or large defects in the dura mater, as they must address the potential complications, such as wound infections, pseudomeningocele formation, cerebrospinal fluid leakage, and cerebral herniation. Therefore, the development of dural substitutes for repairing or reconstructing the damaged dura mater holds clinical significance. In this review we highlight the progress in the development of dural substitutes, encompassing autologous, allogeneic, and xenogeneic replacements, as well as the polymeric-based dural substitutes fabricated through various scaffolding techniques. In particular, we explore the development of composite materials that exhibit improved physical and biological properties for advanced dural substitutes. Furthermore, we address the challenges and prospects associated with developing clinically relevant alternatives to the dura mater.

15.
Nanomicro Lett ; 16(1): 110, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321242

ABSTRACT

Inflammatory skin disorders can cause chronic scarring and functional impairments, posing a significant burden on patients and the healthcare system. Conventional therapies, such as corticosteroids and nonsteroidal anti-inflammatory drugs, are limited in efficacy and associated with adverse effects. Recently, nanozyme (NZ)-based hydrogels have shown great promise in addressing these challenges. NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels. The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation. This review highlights the current state of the art in NZ-engineered hydrogels (NZ@hydrogels) for anti-inflammatory and skin regeneration applications. It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness. Additionally, the challenges and future directions in this ground, particularly their clinical translation, are addressed. The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels, offering new possibilities for targeted and personalized skin-care therapies.

16.
Sci Total Environ ; 922: 171223, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38417514

ABSTRACT

The present study reports data on a long-term campaign for monitoring SARS-CoV-2, norovirus, hepatitis A virus, and beta-lactam resistance genes in wastewater samples from a wastewater treatment plant during COVID-19 surge in Suwon, South Korea. Real-time digital PCR (RT-dPCR) assays indicated 100 % occurrence of all but hepatitis A virus and blaNDM gene in influent wastewater samples. CDC-N1 assay detected SARS-CoV-2 in all influent samples with an average log-transformed concentration of 5.1 ± 0.39 and the highest level at 6.02 gene copies/L. All samples were also positive for norovirus throughout the study with a mean concentration 5.67 ± 0.65 log10 gene copies/L. On the contrary, all treated wastewater (effluent) tested negative for both viruses' genetic materials. Furthermore, plasmid-mediated AmpC ß-lactamases (PABLs) genes blaDHA, blaACC, and blaFOX, extended-spectrum ß-lactamases (ESBLs) genes blaTEM and blaCTX, and Klebsiella pneumoniae carbapenemase (blaKPC) gene were measured at average concentrations of 7.05 ± 0.26, 5.60 ± 0.35, 7.82 ± 0.43, 8.38 ± 0.20, 7.64 ± 0.29, and 7.62 ± 0.41 log10 gene copies/L wastewater, respectively. Beta-lactam resistance genes showed strong correlations (r), the highest being 0.86 for blaKPC - blaFOX, followed by 0.82 for blaTEM - blaCTX and 0.79 for blaTEM - blaDHA. SARS-CoV-2 RNA occurrence in the wastewater was strongly associated (r = 0.796) with COVID-19 cases in the catchment during the initial study period of six months. A positive association of the SARS-CoV-2 RNA with the prevalence of COVID-19 cases showed a promising role of community-scale monitoring of pathogens to provide considerable early signals of infection dynamics. High concentrations of beta-lactam resistance genes in wastewater indicated a high concern for one of the biggest global health threats in South Korea and the need to find control measures. Moreover, antibiotic-resistance genes in treated wastewater flowing through water bodies and agricultural environments indicate further dissemination of antibiotic resistance traits and increasing microbial antibiotic resistance.


Subject(s)
COVID-19 , Wastewater , Humans , COVID-19/epidemiology , Wastewater-Based Epidemiological Monitoring , RNA, Viral , SARS-CoV-2/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , beta-Lactam Resistance
17.
Environ Res ; 249: 118449, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38354880

ABSTRACT

The current study focused on analyzing the effect of different types of bulking agents and other factors on fed-batch composting and the structure of microbial communities. The results indicated that the introduction of bulking agents to fed-batch composting significantly improved composting efficiency as well as compost product quality. In particular, using green waste as a bulking agent, the compost products would achieve good performance in the following indicators: moisture (3.16%), weight loss rate (85.26%), and C/N ratio (13.98). The significant difference in moisture of compost products (p < 0.05) was observed in different sizes of bulking agent (green waste), which was because the voids in green waste significantly affected the capacity of the water to permeate. Meanwhile, controlling the size of green waste at 3-6 mm, the following indicators would show great performance from the compost products: moisture (3.12%), organic matter content (63.93%), and electrical conductivity (EC) (5.37 mS/cm). According to 16S rRNA sequencing, the relative abundance (RA) of thermophilic microbes increased as reactor temperature rose in fed-batch composting, among which Firmicutes, Proteobacteria, Basidiomycota, and Rasamsonia were involved in cellulose and lignocellulose degradation.


Subject(s)
Composting , Composting/methods , Soil Microbiology , RNA, Ribosomal, 16S/analysis , Microbiota , Bacteria/classification , Bacteria/genetics , Soil/chemistry
18.
J Appl Microbiol ; 135(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38178631

ABSTRACT

AIMS: We aimed to investigate the prevalence, pathology, and characterization of Streptococcus dysgalactiae subsp. equisimilis (SDSE) in slaughtered pigs of India. METHODS AND RESULTS: We collected 1254 morbid tissues (lungs-627 and spleen-627) and 627 heart-blood from 627 slaughtered pigs. The bacterial isolation, antibiogram, virulence gene profiling, and mouse pathogenicity testing were performed for the detection and characterization of SDSE. A total of 177 isolates (heart-blood-160 and tissues-17) were recovered from 627 slaughtered pigs with higher isolation rate in heart-blood (25.51%). The prevalence of SDSE was 11% in morbid tissues by polymerase chain reaction. Majority of isolates showed higher detection of streptolysin O, followed by streptokinase and extracellular phospholipase A virulence genes with higher degree of resistance to azithromycin, clindamycin, erythromycin, and penicillin antibiotics. Mouse pathogenicity testing confirmed virulence based on histopathological lesions and re-isolation of SDSE. CONCLUSIONS: Our findings highlight the high prevalence of SDSE in slaughtered pigs. The presence of virulence genes and mouse pathogenicity testing confirm their pathogenic potential.


Subject(s)
Anti-Bacterial Agents , Streptococcal Infections , Streptococcus , Animals , Swine , Mice , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Streptococcal Infections/epidemiology , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , Drug Resistance, Bacterial/genetics
19.
Environ Geochem Health ; 46(2): 54, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252329

ABSTRACT

Brominated halonitromethanes (Br-HNMs) are generated in water disinfection processes and present high toxicity to human health. This work used aspartic acid (ASP) as the precursor to reveal that bromide (Br-) induced the production of Br-HNMs in the UV/chlorine disinfection process. Consequently, six Br-HNMs were identified, and their yields presented an increasing and then declining evolution over the reaction time from 0 to 15 min. Also, the total Br-HNMs yield reached the maximum of 251.1 µg L-1 at 5 min and then declined to 107.1 µg L-1. The total Br-HNMs yield increased from 2.40 to 251.14 µg L-1 with the increase of Cl2:Br- ratios from 0.25 to 3.0 by increasing free chlorine dosage with a fixed Br- concentration, and it increased from 207.59 to 251.14 µg L-1 and then decreased to 93.44 µg L-1 with the increase of Cl2:Br- ratio from 1.0 to 3.6 by increasing Br- concentration with a fixed free chlorine dosage. Besides, the total Br-HNMs yield reached the highest value (251.14 µg L-1) at pH 7.0 and the lowest value (74.20 µg L-1) at pH 8.0. Subsequently, the possible reaction mechanism of Br-HNMs generated from ASP was deduced, and the changes in toxicity of Br-HNMs also followed an increasing and then declining trend, closely relating to Br-HNMs yields and Br- utilization. This work explored and illustrated the yields, influence factors, reaction mechanisms, and toxicity of Br-HNMs formed from Br- containing ASP water during UV/chlorine disinfection, which might help to control Br-HNMs formation.


Subject(s)
Aspartic Acid , Chlorine , Humans , Bromides , Disinfection , Chlorides , Water
20.
J Environ Manage ; 351: 119760, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086124

ABSTRACT

Saturated hydraulic conductivity (Ks) of the filler layer in grassed swales are varying in the changing environment. In most of the hydrological models, Ks is assumed as constant or decrease with a clogging factor. However, the Ks measured on site cannot be the input of the hydrological model directly. Therefore, in this study, an Ensemble Kalman Filter (EnKF) based approach was carried out to estimate the Ks of the whole systems in two monitored grassed swales at Enschede and Utrecht, the Netherlands. The relationship between Ks and possible influencing factors (antecedent dry period, temperature, rainfall, rainfall duration, total rainfall and seasonal factors) were studied and a Multivariate nonlinear function was established to optimize the hydrological model. The results revealed that the EnKF method was satisfying in the Ks estimation, which showed a notable decrease after long-term operation, but revealed a recovery in summer and winter. After the addition of Multivariate nonlinear function of the Ks into hydrological model, 63.8% of the predicted results were optimized among the validation events, and compared with constant Ks. A sensitivity analysis revealed that the effect of each influencing factors on the Ks varies depending on the type of grassed swale. However, these findings require further investigation and data support.


Subject(s)
Poaceae , Soil , Netherlands , Chemical Phenomena , Hydrology
SELECTION OF CITATIONS
SEARCH DETAIL
...